Version: 1.0: 0205

General Certificate of Education

Mathematics 6360

MPC2 Pure Core 2

Mark Scheme

2005 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

www.mymainscloud.com

Key to mark scheme and abbreviations used in marking

M	mark	is	for	method	

m or dM mark is dependent on one or more M marks and is for method A mark is dependent on M or m marks and is for accuracy

B mark is independent of M or m marks and is for method and accuracy

E mark is for explanation

√or ft or F follow through from previous

no method shown

incorrect result MC mis-copy correct answer only MR mis-read

CSO correct solution only RA required accuracy AWFW anything which falls within FW further work

AWRT anything which rounds to **ISW** ignore subsequent work **ACF** any correct form from incorrect work **FIW** answer given given benefit of doubt AG BOD special case SC work replaced by candidate WR

c

OE OE FB formulae book A2,1 2 or 1 (or 0) accuracy marks NOS not on scheme -x EE deduct x marks for each error G graph

PI possibly implied sf significant figure(s) SCA substantially correct approach dp decimal place(s)

Application of Mark Scheme

No method shown:

CAO

NMS

Correct answer without working mark as in scheme

Incorrect answer without working zero marks unless specified otherwise

More than one method / choice of solution:

2 or more complete attempts, neither/none crossed out mark both/all fully and award the mean

mark rounded down

1 complete and 1 partial attempt, neither crossed out award credit for the complete solution only

Crossed out work do not mark unless it has not been replaced

Alternative solution using a correct or partially correct method award method and accuracy marks as

appropriate

candidate

	AQA GCE Mark Scheme 2005 June series –				
				GCE Mark Scheme 2005 June series – Comments Lice of absin C. OF	
2	Solution	Marks	Total	Comments	
(a)	Area = $\frac{1}{2} \times 5 \times 4.8 \times \sin 30^{\circ}$	M1		Use of $\frac{1}{2}ab\sin C$ OE	
(4)	$= 6 \text{ cm}^2.$	A1	2	Condone absent cm ² . [Note: Calculator set in wrong mode, penalise only once on the paper.]	
(b)	$AB^2 = 5^2 + 4.8^2 - 2 \times 5 \times 4.8 \cos 30^\circ$	M1		RHS of cosine rule used	
	= 25 + 23.04 - 41.569	m1		Correct order of evaluation	
	= 6.4707	'			
	⇒ AB = $\sqrt{6.47}$ = 2.5437 = 2.54 cm to 3 sf	A1	3	Accept 'better' than 2.54 Condone absent cm	
	Total		5		
2(a)	$Arc = r\theta$	M1		For $r\theta$ or 16θ or 16×1.5 OE multiplication	
	$1.5r + r + r \ (= 56)$	M1		For realising that perimeter is sum of two radii and arc.	
	$3.5r = 56 \Rightarrow r = 16$	A1	3	AG Completion (condone verification)	
(b)	Area of sector = $\frac{1}{2}r^2\theta$	M1		$\frac{1}{2}r^2 \theta$ OE seen	
	$= \frac{1}{2}16^2(1.5) = 192 \text{ cm}^2.$	A1	2	Condone absent cm ² .	
	Total		5		
8(a)	$u_{1} = 87; \ u_{2} = 84$	B1;B1 √	2	ft on $u_2 = u_1 - 3$ SC B1 for 90, 87	
(b)	Common difference (d) is -3	B1	1		
(c)	$\sum_{n=1}^{k} u_n = \text{sum of AP}$	M1			
	$\dots = \frac{k}{2} [174 + (k-1)(-3)]$	A1√		OE ft on u_1 and use of $d = 3$ (For M1A1 ft condone n in place of k)	
	$0 = \frac{k}{2} [177 - 3k] \Rightarrow 177 = 3k$!			
	$\Rightarrow k = 59$	A1	3	Just the single value 59	
LTI	$= \sum_{n=1}^{k} 90 - \sum_{n=1}^{k} 3n = 90k - 3\left[\frac{k}{2}(k+1)\right]$	M1;A1		M1 split and either $90k$ or $\left[\frac{k}{2}(k+1)\right]$	
	$0 = 90k - 1.5k(k+1) \Rightarrow k = 59$	A1		(For 1^{st} two marks condone n in place of k)	

www.mymathscloud.com

MPC2 (cont)

MPC2 (c	Solution	Marks	Total	Comments
4(a)(i)	$\sqrt{x} = x^{\frac{1}{2}}$	B1	1	Accept $p = 0.5$
	$\sqrt{x} = x^{\frac{1}{2}}$ $\int \sqrt{x} dx = \frac{x^{1.5}}{1.5} \{+c\}$	M1 A1√	2	Index raised by 1 Correct ft on p. Condone missing '+c'
(iii)	Area = $\int_{1}^{4} \sqrt{x} dx$	B1		Limits 1 and 4 PI
	$\dots = \frac{4^{1.5}}{1.5} - \frac{1}{1.5}$	M1		F(4) - F(1)
	$=\frac{14}{3}$	A 1	3	Accept 4.66 or better
(b)(i)	$y = x^{\frac{1}{2}} \Rightarrow \frac{dy}{dx} = \frac{1}{2}x^{-\frac{1}{2}}$	M1		Index (<i>p</i> −1) ft
	When $x=4$, $y'(4) = 0.25$	M1		Attempt to find $y'(4)$.
	When $x=4$, $y=2$	B1		
	Equation of tangent: $y-2=\frac{1}{4}(x-4)$	A1	4	accept other forms
(ii)	When $x = 0$, $y = 1$ $B(0, 1)$	M1		Subs $x = 0$ and then $y = 0$ into
	When $y = 0$, $x = -4$ $A(-4, 0)$	A1√		equation of tangent. PI Correct ft y_B and x_A (may be awarded as part of area
	Area = $0.5(1)(4) = 2$	A1√	3	calculation) ft wrong sloping tangent and max of 1 further slip. Final answer must be +'ve
(c)	Translation	B1		'Translation'/'translate(d)'
	$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	B1	2	Accept equivalent in words provided linked to 'translation/move/shift' (Note: B0B1 is possible)
(d)	$h = 1$ Integral = $h/2$ {}	B1		PI
	$\{\} = f(1) + 2[f(2) + f(3)] + f(4)$ $\{\} = 0 + 2(1 + \sqrt{2}) + \sqrt{3}$	M1		OE summing of areas of the three traps
		A1		Condone 1 numerical slip
	Integral = $\frac{1}{2}$ { 2(1+1.414)+1.732 }			
	Integral = $0.5 \times 6.560 = 3.28$ to 3sf	A1	4	CAO Must be 3.28
	Total		19	

			AOA	GCE Mark Scheme 2005 June series – Thathscloud Comments
DC2 ((OCE Wark Scholle 2005 Jule School Street School Street School Sch
PC2 (C Q	Solution	Marks	Total	Comments
Ì		M1		$(Accept S_{\infty} = \frac{a}{1 - \frac{3}{4}})$
	$\frac{a}{1-r} = 4a$ $\Rightarrow 1 - r = \frac{a}{4a} \text{ or } a = 4a(1-r)$ $1 - r = \frac{1}{4} \Rightarrow r = \frac{3}{4}$	A1 A1	3	Either (or better) (or $S_{\infty} = 4a$ if M1 above) AG CSO Be convinced. (or statement 4 times 1 st term)
(b)	$(S_{10} =) \frac{48(1 - r^{10})}{1 - r}$	M1		Correct formula with n = 10 and one of $a = 48$ or $r = \frac{3}{4}$ OE
	$= 192(1-0.75^{10}) = 181.1878 \text{ to 4dp}$	A1	2	
(c)(i)	$u_n = \underline{ar}^{n-1} = a \left(\frac{3}{4}\right)^{n-1} = 48 \left(\frac{3}{4}\right)^{n-1}$	B1		
	$u_{2n} = \underline{ar^{2n-1}} = a\left(\frac{3}{4}\right)^{2n-1} = 48\left(\frac{3}{4}\right)^{2n-1}$	B1√	2	ft on candidate's $u_n = ar^{\text{function of } n}$
(ii)	$\frac{u_n}{u_{2n}} = \frac{ar^{n-1}}{ar^{2n-1}} = \frac{r^{n-1}}{r^{2n-1}}$	M1		Eliminating a (or 48) or log a
	$\log_{10} u_n - \log_{10} u_{2n} = \log_{10} \frac{u_n}{u_{2n}}$	M1		Using at least one log law
	$= \log_{10} \frac{r^{n-1}}{r^{2n-1}} = \log_{10} \left(r^{-n} \right)$ $= -n \log_{10} \frac{3}{4} = n \log_{10} \frac{4}{3}$	A1	3	AG CSO Full valid completion
(iii)	$\log_{10} \left[\frac{u_{100}}{u_{200}} \right] = 100 \log_{10} \left(\frac{4}{3} \right)$	M1		
	= 12.49 = 12.5 to 3 sf	A1	2	AG CSO Be convinced SC:Those applying 'hence' to (i) rather than to (ii) Mark as B2
	Total		12	

www.ms.mathscloud.com

MPC2 (Cont)

Q	Solution	Marks	Total	Comments
6(a)	$(1+x)^4 = 1 + 4x + 6x^2 + 4x^3 + x^4$	M1		Full method
	(1+x) = $1+1x+0x+1x+x$	A2,1	3	A1 if four terms correct or just one
				slip
	$(1+\sqrt{5})^4 = 1+4\sqrt{5}+6(\sqrt{5})^2+$,
(b)(i)		M1		Substitute. $\sqrt{5}$ for x .
	$+4(\sqrt{5})^3+(\sqrt{5})^4$			
	$(1+\sqrt{5})^4 = 1+4\sqrt{5}+6(\sqrt{5})^2 + 4(\sqrt{5})^3 + (\sqrt{5})^4$ $=1+4\sqrt{5}+6(5)+4(5\sqrt{5})+(25)$	A1ft		Two of 3 terms shown in brackets
	-1+4\(3+0\(3\)+4\(3\(3\))+\(23\)	71110		1 wo of 5 terms shown in brackets
	= $56 + 24\sqrt{5}$	A1	3	AG CSO Be convinced
(ii)	$\log_{10} \left(1 + \sqrt{5}\right)^4 - \log_{10} \left[8(7 + 3\sqrt{5})\right]$	M1		
(11)	$\log_2 (1 + \sqrt{5})^4 = \log_2 [8(7 + 3\sqrt{5})]$ $= \log_2 8 + \log_2 (7 + 3\sqrt{5})$	1411		
	$= \log_{10} 8 + \log_{10} (7 + 3\sqrt{5})$	m1		
	$= 3 + \log_2(7 + 3\sqrt{5})$	A1	3	CSO
				SC B1 Change to base 10 and verify
	Total		9	
7(a)	$ = x^5 - x^{-3}$	M1		One power correct
		A1	2	Accept $p = 5$, $q = -3$
(b)(i)	$f'(x) = \frac{5x^4}{+3x^{-4}}$ $f'(x) \left\{ = 5x^4 + \frac{3}{x^4} \right\} > 0$	B1√		ft on px^{p-1}
	$+3x^{-4}$	B1√	2	ft on $-qx^{q-1}$ provided $q < 0$
(ii)	(2)	M1	2	M1 Considers sign of $f'(x)$; a
(11)	$f'(x) \left\{ = 5x^4 + \frac{3}{x^4} \right\} > 0$	1411		statement
	(" $f'(x) > 0$ OE" with 'f increasing'.
	⇒ f is increasing {function}	A1	2	,
	(,	711	_	A1 needs f'(x) of the form $ax^4 + \frac{b}{x^4}$,
				λ
				where a and b both > 0 and no incorrect statements based on $f'(x)$ at
				different values of x
(2)	A+(1,0) $f''(1)=5+2=9$	N/1		
(c)	At $(1,0)$, $f'(1) = 5 + 3 = 8$	M1		Attempts to find f ′(1)
	\Rightarrow grad. of normal = $-\frac{1}{8}$	m1		
	8	m1 A1√	3	Use of $m \times m' = -1$ PI ft on wrong $f'(x)$
	T-4-1			it on wrong i (x)
	Total		9	

	Cont) Solution	Maula	Takal	GCE Mark Scheme 2005 June series – Thaths Comments
Q (a)(i)		Marks	Total	Comments
(<i>a</i>)(1)	$4\frac{\sin\theta}{\cos\theta}\sin\theta = 15$			
	$\Rightarrow 4\sin^2\theta = 15\cos\theta$	Б.		LGD : I
	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	B1	1	AG Be convinced
(ii)	$\sin^2\theta + \cos^2\theta = 1$	M1		OE seen
` /	$4(1-\cos^2\theta) = 15\cos\theta$			
	$4\cos^2\theta + 15\cos\theta - 4 = 0$	A1	2	AG Be convinced
		711		TIG De convinced
(b)(i)	(4c-1)(c+4)=0	M1		Factorisation or formula or
	$(4c-1)(c+4) = 0$ $c = -4, c = \frac{1}{4}$	IVI I		completion of square
	$c = -4$, $c = \frac{1}{4}$	A1	2	Both values
(ii)				AG convincingly explained
()	Since $-1 \le \cos \theta \le 1$, the only			(Condone strict inequalities)
	possible value for $\cos \theta$ is $\frac{1}{4}$	E1√	1	Ft provided candidates answers for c
	T			are $\frac{1}{4}$ and a value k such that $k > 1$ or
				k < -1
(iii)	$\theta = 75.5^{\circ}$	B1		
	204.50	D1 ^		Ft on [360 – c's 75.5°] as only other
	$\theta = 284.5^{\circ}$	B1√	2	solution in the given interval
(c)	1			
(-)	: : : : : : : : : : : : : : : : : : :	M1		Links with previous parts. PI
	$x = 19^{\circ}, 71^{\circ}$	A1√	2	Ft on (iii)/4(only ft if 2 answers in given range).
	,	Total	10	given range).
		Total Total	75	