ASSESSMENT and
OUALIFICATIONS

General Certificate of Education

Mathematics 6360

MPC2 Pure Core 2

Mark Scheme
 2005 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Key to mark scheme and abbreviations used in marking

M	mark is for method	
m or dM	mark is dependent on one or more M marks and is for method	
A	mark is dependent on M or m marks and is for accuracy	
B	mark is independent of M or m marks and is for method and accuracy	
E	mark is for explanation	
Vor ft or F	follow through from previous	
	incorrect result	MC

Application of Mark Scheme

No method shown:

Correct answer without working
Incorrect answer without working
More than one method / choice of solution:
2 or more complete attempts, neither/none crossed out
1 complete and 1 partial attempt, neither crossed out

Crossed out work

Alternative solution using a correct or partially correct method
mark as in scheme
zero marks unless specified otherwise
mark both/all fully and award the mean mark rounded down
award credit for the complete solution only
do not mark unless it has not been replaced
award method and accuracy marks as appropriate

MPC2

Q	Solution	Marks	Total	Comments
1(a) (b)	$\begin{aligned} & \text { Area }=\frac{1}{2} \times 5 \times 4.8 \times \sin 30^{\circ} \\ &=6 \mathrm{~cm}^{2} . \\ & \\ & A B^{2}=5^{2}+4.8^{2}-2 \times 5 \times 4.8 \cos 30^{\circ} \\ &=25+23.04-41.569 \\ &=6.4707 . . \\ & \Rightarrow \mathrm{AB}=\sqrt{6.47 \ldots}=2.5437 \\ &=2.54 \mathrm{~cm} \text { to } 3 \mathrm{sf} \end{aligned}$	M1 A1 M1 m1 A1	3	Use of $\frac{1}{2} a b \sin C$ OE Condone absent cm^{2}. [Note: Calculator set in wrong mode, penalise only once on the paper.] RHS of cosine rule used Correct order of evaluation Accept 'better' than 2.54 Condone absent cm
	Total		5	
2(a)	$\begin{aligned} & \text { Arc }=r \theta \\ & 1.5 r+r+r(=56) \\ & 3.5 r=56 \Rightarrow r=16 \\ & \text { Area of sector }=\frac{1}{2} r^{2} \theta \\ & =\frac{1}{2} 16^{2}(1.5)=192 \mathrm{~cm}^{2} . \end{aligned}$	M1 M1 A1 M1 A1	3	For $r \theta$ or 16θ or 16×1.5 OE multiplicatio For realising that perimeter is sum of two radii and arc. AG Completion (condone verification) $\frac{1}{2} r^{2} \theta \text { OE seen }$ Condone absent cm^{2}.
	Total		5	
3(a)	$u_{1}=87 ; u_{2}=84$	$\mathrm{B} 1 ; \mathrm{B} 1$	2	$\mathrm{ft} \mathrm{on} u_{2}=u_{1}-3 \quad$ SC B1 for 90,87
(b)	Common difference (d) is - 3	B1	1	
(c)	$\sum_{n=1}^{k} u_{n}=\operatorname{sum} \text { of AP }$	M1		
	$\begin{aligned} & \ldots \ldots . .=\frac{k}{2}[174+(k-1)(-3)] \\ & 0=\frac{k}{2}[177-3 k] \Rightarrow 177=3 k \\ & \Rightarrow k=59 \end{aligned}$	$\mathrm{Al} \sqrt{ }$ A1	3	OE ft on u_{1} and use of $d=3$ (For M1A1 ft condone n in place of k) Just the single value 59
ALTI	$\begin{aligned} & =\sum_{n=1}^{k} 90-\sum_{n=1}^{k} 3 n=90 k-3\left[\frac{k}{2}(k+1)\right] \\ & 0=90 k-1.5 k(k+1) \Rightarrow k=59 \end{aligned}$	M1;A1 A1		M1 split and either $90 k$ or $\left[\frac{k}{2}(k+1)\right]$ (For $1^{\text {st }}$ two marks condone n in place of k)
	Total		6	

Q	Solution	Marks	Total	Comments
4(a)(i)	$\sqrt{x}=x^{\frac{1}{2}}$	B1	1	Accept $p=0.5$
(ii)	$\int \sqrt{x} \mathrm{~d} x=\frac{x^{1.5}}{1.5}\{+c\}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \sqrt{ } \end{aligned}$	2	Index raised by 1 Correct ft on p. Condone missing ' +c '
(iii)	$\text { Area }=\int_{1}^{4} \sqrt{x} \mathrm{~d} x$	B1		Limits 1 and 4 PI
	$\ldots \ldots=\frac{4^{1.5}}{1.5}-\frac{1}{1.5}$	M1		$F(4)-F(1)$
	$=\frac{14}{3}$	A1	3	Accept 4.66 or better
(b)(i)	$y=x^{\frac{1}{2}} \Rightarrow \frac{d y}{d x}=\frac{1}{2} x^{-\frac{1}{2}}$	M1		Index ($p-1$) ft
	When $x=4, y^{\prime}(4)=0.25$	M1		Attempt to find $y^{\prime}(4)$.
	When $x=4, y=2$	B1		
	Equation of tangent: $y-2=\frac{1}{4}(x-4)$	A1	4	accept other forms
(ii)	When $x=0, y=1 \quad B(0,1)$	M1		Subs $x=0$ and then $y=0$ into
	When $y=0, x=-4 \quad A(-4,0)$	A1 \checkmark		of tangent. PI
				Correct ft y_{B} and x_{A}
				(may be awarded as part of area calculation)
	Area $=0.5(1)(4)=2$	A1 \checkmark	3	ft wrong sloping tangent and max of 1 further slip. Final answer must be +'ve
(c)	Translation	B1		'Translation'/'translate(d)'
	$\left[\begin{array}{l} 1 \\ 0 \end{array}\right]$	B1	2	Accept equivalent in words provided linked to 'translation/move/shift' (Note: B0B1 is possible)
(d)	$\begin{aligned} & h=1 \\ & \text { Integral }=h / 2\{\ldots \ldots\} \end{aligned}$	B1		
	$\{\ldots .\}=\mathrm{f}(1)+2[\mathrm{f}(2)+\mathrm{f}(3)]+\mathrm{f}(4)$	M1		OE summing of areas of the three traps
	$\{\ldots . .\}=0+2(1+\sqrt{2})+\sqrt{3}$	A1		Condone 1 numerical slip
	$\text { Integral }=\frac{1}{2}\{2(1+1.414 \ldots)+1.732\}$			
	Integral $=0.5 \times 6.560 \ldots=3.28$ to 3 sf	A1	4	CAO Must be 3.28
	Total		19	

MPC2 (Cont)

Q	Solution	Marks	Total	Comments
5(a)	$\frac{a}{1-r}=4 a$	M1		(Accept $S_{\infty}=\frac{a}{1-\frac{3}{4}}$)
	$\begin{aligned} & \Rightarrow 1-r=\frac{a}{4 a} \text { or } a=4 a(1-r) \\ & 1-r=\frac{1}{4} \Rightarrow r=\frac{3}{4} \end{aligned}$	A1 A1	3	Either (or better) (or $S_{\infty}=4 a$ if M1 above) AG CSO Be convinced. (or statement 4 times ${ }^{\text {st }}$ term)
(b)	$\left(S_{10}=\right) \frac{48\left(1-r^{10}\right)}{1-r}$	M1		Correct formula with $\mathrm{n}=10$ and one of $a=48$ or $r=\frac{3}{4} \mathrm{OE}$
(c)(i)	$=192\left(1-0.75^{10}\right)=181.1878$ to 4 dp	A1	2	
	$u_{n}=\underline{a r^{n-1}}=a\left(\frac{3}{4}\right)^{n-1}=48\left(\frac{3}{4}\right)^{n-1}$	B1		
	$u_{2 n}=\underline{a r^{2 n-1}}=a\left(\frac{3}{4}\right)^{2 n-1}=48\left(\frac{3}{4}\right)^{2 n-1}$	B1J	2	ft on candidate's $u_{n}=a r^{\text {function of } n}$
(ii)	$\frac{u_{n}}{u_{2 n}}=\frac{a r^{n-1}}{a r^{2 n-1}}=\frac{r^{n-1}}{r^{2 n-1}}$	M1		Eliminating a (or 48) or $\log a$
	$\log _{10} u_{n}-\log _{10} u_{2 n}=\log _{10} \frac{u_{n}}{u_{2 n}}$	M1		Using at least one log law
	$\begin{aligned} & =\log _{10} \frac{r^{n-1}}{r^{2 n-1}}=\log _{10}\left(r^{-n}\right) \\ & =-n \log _{10} \frac{3}{4}=n \log _{10} \frac{4}{3} \end{aligned}$	A1	3	AG CSO Full valid completion
(iii)	$\log _{10}\left[\frac{u_{100}}{u_{200}}\right]=100 \log _{10}\left(\frac{4}{3}\right)$	M1		
	$=12.49 \ldots .=12.5$ to 3 sf	A1	2	AG CSO Be convinced SC:Those applying 'hence' to (i) rather than to (ii) Mark as B2
	Total		12	

MPC2 (Cont)

MPC2 (Cont)

